Stratifying land use/land cover for spatial analysis of disease ecology and risk: an example using object-based classification techniques.
نویسندگان
چکیده
Landscape epidemiology has made significant strides recently, driven in part by increasing availability of land cover data derived from remotely-sensed imagery. Using an example from a study of land cover effects on hantavirus dynamics at an Atlantic Forest site in eastern Paraguay, we demonstrate how automated classification methods can be used to stratify remotely-sensed land cover for studies of infectious disease dynamics. For this application, it was necessary to develop a scheme that could yield both land cover and land use data from the same classification. Hypothesizing that automated discrimination between classes would be more accurate using an object-based method compared to a per-pixel method, we used a single Landsat Enhanced Thematic Mapper+ (ETM+) image to classify land cover into eight classes using both per-pixel and object-based classification algorithms. Our results show that the object-based method achieves 84% overall accuracy, compared to only 43% using the per-pixel method. Producer's and user's accuracies for the object-based map were higher for every class compared to the per-pixel classification. The Kappa statistic was also significantly higher for the object-based classification. These results show the importance of using image information from domains beyond the spectral domain, and also illustrate the importance of object-based techniques for remote sensing applications in epidemiological studies.
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملMicro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation
Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...
متن کاملDevelopment of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملChange Detection Gamasiab River Margins in Kermanshah by Comparison Pixel Base and Object Orientd Algorithms
Introduction Land use reflects the interactive characteristics of humans and the environment and describes how human exploitation works for one or more targets on the ground. Land use is usually defined on the basis of human use of the land, with an emphasis on the functional role of land in economic activities. Land use, which is associated with human activity, is undergoing change over time....
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geospatial health
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2007